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We study the time evolution of a quantum particle in a rapidly varying random potential. New sets of
exponent relations are found for the moments of the position of the particle. The moments exhibit weak
multifractal behavior. We argue that these results are inherently quantum mechanical in nature and
have no classical correspondence. Each set of exponent relations is associated with a set of conservation

laws.
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I. INTRODUCTION

The behavior of a quantum particle in the presence of a
random potential has attracted enormous theoretical in-
terest in recent years. When the random potential is stat-
ic the problem reduces to the well-known problem in
condensed-matter physics, namely, Anderson localization
[1,2]. The role of disorder on the motion of electrons or
waves is well known to be crucial in low dimensions. The
coherent interference effects, due to elastic scattering by
static disorder, lead to strong localization of electronic
eigenstates for arbitrary weak disorder in spatial dimen-
sions d <2. If initially the particle is placed on a given
site, the long-time motion of the particle becomes
subdiffusive [3]. This absence of diffusion leads to an in-
sulating state. Several other connections of this problem
to diverse fields such as physics, chemistry, and biology
have been explored [4]. These studies include random
multiplication and annihilation in random media (exciton
trapping, chain reaction with random fissile distributions,
and diffusion controlled reactions), dielectric relaxation,
self-attracting polymer chains, evolution of biological
species, and spin depolarization in random magnetic
fields.

The case of a particle or wave motion in the presence
of dynamical disorders does not seem to have drawn
comparable attention. Interest in this problem began to
grow only recently [5-9], even though the problem was
addressed long ago [10,11]. Very recently researchers
have begun to appreciate and recognize its connection to
other problems in the physics of disordered systems, such
as anomalous diffusion and directed polymers in random
media [9]. The Schrédinger equation governing this
problem is an imaginary-time version of the equation
describing the directed polymer in a random potential.
This problem has been intensively investigated in the past
few years [12]. The Schrddinger equation in the presence
of a time-dependent random potential also, to a good ap-
proximation, maps onto a problem of propagation of
directed wave fronts in disordered media [9]. In a highly
anisotropic medium, when the scattering potential arising
due to fluctuations in the local refractive index varies
slowly in one direction, one has a problem of coherent
directed wave propagation in the perpendicular direction.

1063-651X/93/48(2)/837(6)/$06.00 48

The quantum-mechanical problem of the motion of a par-
ticle in a dynamically disordered medium is described by
a time-dependent Schrodinger equation

2
iﬁ%‘tkz—%v3¢+ Vix,00 (1)

where V3 is a d-dimensional Laplacian and V (x,t) is the
stochastic potential with given statistics. For the specific
choice of V(x,t) being Gaussian and correlated by a 8
function in time, i.e.,

(Vi(x,1))=0,

(2)
(V(x,t)V(x',t'))=2V3g(x —x")6(t —1t') ,

the problem has been solved exactly [10]. When the spa-
tial correlation function g(x —x') is a Gaussian function
of its argument, the mean-squared displacement of parti-
cle {x?2) scales as ¢3. This is a superdiffusive motion at
all time scales. In the presence of a parametric fluctuat-
ing potential the particle continues to absorb energy from
the fluctuating force and accelerates indefinitely. In
short, the particle heats up to an infinite temperature. It
should also be noted that exactly the same asymptotic
scaling behavior is obtained for the corresponding classi-
cal problem [10].

Golubovic, Feng, and Zeng have considered [7] classi-
cal and quantum diffusion in a time-dependent
random potential with a short-range correlation
both in space and time, ie., (V(x,0)V(x',t'))
=exp[ —a(x —x')>—b(t —t')*]. They have obtained a
superlinear scaling relation for the mean-squared dis-
placement. For a one-dimensional (1D) case, {x2) ~¢!%/°
and for d> 1, (x?) ~t°/%. They have claimed that scal-
ing laws are superuniversal. Recently, however, Rosen-
bluth [8] has obtained altogether different scaling
behavior {x2)~¢? for d> 1 for the same problems. The
scaling relation in 1D is unchanged. The problem is yet
to be sorted out in detail for other types of correlation
functions.

It should be noted that the quantum motion of a parti-
cle on a one-band lattice or discretized version of the
Schrodinger equation always gives the asymptotic
behavior for {(x2) ~z. This is a diffusive motion and does
not depend on the types of correlation functions of ran-
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dom fluctuations. This result differs qualitatively from
the continuum models and is understandable in terms of
the momentum cutoff inherent in the lattice [10,11].

In an another interesting development, Bouchaud,
Touati, and Sornette have studied [6] the time evolution
of a wave packet in a rapidly varying random potential.
They have worked with a discritized version of the
Schrodinger equation. In this case the kinetic-energy
operator is bounded. It is found that the wave function
becomes a multifractal, i.e., it needs an infinite number of
exponents to describe its evolution. The mean-squared
displacement is diffusive as expected. The motion of the
center of mass of the wave packet is characterized by a
new exponent, ¢ [x2]) ~t%, with v= +- This subdiffusive
motion is in agreement with the earlier prediction [13].

Here we analyze the quantum motion in a continuum
with statistics of potential fluctuations given by Eq. (2).
We also give details of our earlier calculations. We show
here that the scaling relations for moments of displace-
ment {x") depend sensitively on the nature of g(x —x"').
In fact we can obtain infinite set of new scaling ex-
ponents. Each set of exponents is associated with certain
conservation laws associated with the kinetic energy.
These conservation laws are unique to quantum systems.
We also believe that the same result cannot be obtained
for a corresponding classical problem.

II. THEORETICAL RESULTS

To this end we will now obtain an exact solution of the
quantum problem on a continuum. For simplicity we
shall treat the case of one space dimension. Generaliza-
J

Sp(x’',x,t)

tion to arbitrary dimension is straightforward as the fol-
lowing treatment shows. Our scaling relations are in-
dependent of dimensionality. First we will set up an
equation for the density matrix. All the physical quanti-
ties of interest can be conveniently expressed in terms of
an averaged reduced density matrix ¢ p(x',x,t) ), where

plx',x,)=1*(x",)(x,1) 3)

and the angular brackets denote the average over the
realization of the stochastic potential ¥V (x,¢). Using Egs.
(1) and (3), the equation of motion of the averaged density
matrix can be written as

9’ 9?

ax?  Ax'?

d : N
ar PRI =

(p(x',x,1))

+ %( Vix,t)p(x',x,t))

——;-<V(x',t)p(x’,x,t)) . 4)

The occurrence of {V(x,t)p(x'x,t)) on the right-hand
side would normally lead to a hierarchy of coupled equa-
tions. The choice of Gaussian disorder, however, enables
us to obtain a closed set of equations for the density ma-
trix {p(x’,x,t)). The Gaussian choice leads to a factori-
zation of the averages of the form (¥ (x,t)p(x’,x,t)) as
we shall see now.

Clearly, p(x’,x,t) is a functional of the Gaussian ran-
dom variables V' (x,t), and hence the Novikov theorem
[14] for the functions of Gaussian random variables ap-
plies, namely,

Vinopxxm = [ [ (Vixoveren

BV(x",t")ax"at"

>dx”dt” , (5)

where 8p(x',x,t)/[8V (x",t'")9x"'dt"' ] is a functional derivative of p with respect of V. From Egs. (2) and (5), we get

Sp(x',x,t)

(Vix,t)p(x',x,t)) = V(z,fg(x —x")(
Substituting Eq. (6) into Eq. (5) we get

it
2m

92 92

ax? ox'?

d, _
7 (p(x',x,1))

SV(x”,t”)ax”at"

pla,0) 573 [ x —x)(

)dx " (6)

Sp(x’,x,t) "
AV (x",t")dx"dt" >d"

1 , " Sp(x',x,t) "
——;V%fg(x —x )< >dx .

aV(xll’tll)axllatll

Now, integrating Eq. (4) with respect to ¢ before averaging gives

d? 92

ax2  9x'?

p(x',x,t)—p(x',x,t =0)=— % Ot

i t
’ ,t’ tl V ’t, I, ’tl ’
p(x',x,t")d +_ﬁ fo (x,t")p(x’,x,t")dt

i t ’ ’ r ’ ’
P fo Vix',t"p(x',x,t")dt’ .

Let us take a functional derivative of p(x',x, ) with respect to ¥ (x",¢). From Eq. (8) it can at once be written as

Sp(x',x,t)
SV(x",t")ox"at"

__l_ t "__ Y ’ ’ I_i t n_ Y] ’ ’ ’
=2 J 8" —x)8(t =1 )p(x ",z t )t — - [ B(x"—x")8(t — 1" plx",x,1")dt

__l_ "__ ’ __l_ n__ ’
=2z &(x x)p(x',x,t) 7 S(x x")p(x’,x,t) .

(8)
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Substituting Eq. (9) into Eq. (7) we get

%(p(x’,x,t)>=—% 86722—812’2 (p(x',x,1))
+é—V%fg(x —x") #B(x”—xﬂp(x',x,t))—E%S(X”—x')(p(x’,x,t» dx"
—-%V%fg(x’—x") #S(x”-—x)(p(x’,x,t))—§B(x”—x’)<p(x’,x,t)) dx" . (10)
Simplifying Eq. (10), we get
g;(p(x',x,t)>=-—2%l~ —a%;—— aiz,z (p(x’,x,t)>——:7%[g(0)—g(x —x)p(x",x,1)) . (11

The above equation is a closed equation for the single-particle density matrix. Earlier, Madhukar and Post [15] ob-
tained a closed equation for the density matrix for the motion of a quantum particle on a lattice with a site-diagonal and
nearest-neighbor off-diagonal dynamic disorder. One obtains such a closed-form equation by virtue of the white-noise
nature of the random potential. For a general non-white-noise random potential instead one obtains a hierarchy of cou-
pled equations. Equation (11) has to be solved subject to the initial condition that the particle was “prepared” initially
in a wave packet centered at the origin x=0. We shall take conveniently

p(x',x,t =0)=9*(x',t =0)¢(x,t =0) ,

where

I/I(Jc,tzo)z(2"7—)120_1—/2e“’cl/‘w2 . (12)
This ensures correct normalization, f pr(x,x,z =0)dx=1. Here, o denotes the spatial spread of the initial wave
packet. Because of the unbounded nature of the kinetic-energy operator in the continuum limit, it is necessary to
choose a wave packet with o > 0. The asymptotic (¢ — oo ) behavior is, of course, independent of the precise form of the
wave packet. This problem does not arise in the case of the lattice Hamiltonian H;, which is bounded. Equation (12)
can be solved by first taking the time Laplace transform and then considering the resulting hyperbolic equation in the
two independent variables x and x’. We get

2 2

2if ? = 14 v _
0 R(x vs)+ s+;2(lg(0)—ﬁ—20g(Y) R(X,Y,5)=R (X,Y,t=0) , (13)

m J0XdY

where we have introduced the characteristic coordinates X =x +x', Y =x —x’. Here, s is the Laplace transform vari-
able. We have defined

R (X,Y,t)=p(x',x,t) ,
R(X,Y,9)= [ “R(X,Y,n)e “dt ,
0

with
_ . + iKX
Rx,v,0= [ ""R(X,Y,0)e dx . (14)

Here the overbar denotes the spatial Fourier transform, while the tilde denotes the time Laplace transform.
Equation (13) can be converted into an ordinary first-order differential equation in ¥ by taking the Fourier transform
with respect to X, which can then be solved readily subject to the initial condition to give

(0)—g —215‘—5'—”— av' lay . as)

VZ
5 _ _ > _ 2 252 2 2 2y, —sY, _rory
R(K,Y—O,s)—fo {2exp{ —[20%+(#Y2/2m*c?)]K e expl p fo g

The right-hand side of this equation is already in the form of a Laplace transform. Hence, on inversion, we get at once

Y5 )y — [ dy’
Pl .8

— .

R(K,Y =0,t)=2exp{ —[202+(#*t%/2m?*0?)]K *}exp l—
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Equation (16) is identical to Eq. (15) of Ref. [10]. The K
dependence of Eq. (16) depends on the form chosen for
the spatial correlation function g. In fact, we will show
in the following that the scaling relations for the position
moments depends sensitively on the form of g. In Ref.
[10] the scaling relations have been obtained only for a
specific dependence of g on the spatial coordinate. One
readily confirms that Eq. (16) fulfills the normalization
and the initial condition.
The mean-squared displacement can be expressed as

oy 1 9 = _
=—= R = 1
(x*(1) 8 32 R Y =0,0) e (17a)
and other higher moments
(x4(t)>=—1— G R(K,Y =0,t) , (17b)
32 9K* K =0
(xﬁ(t)>=—L A R(K,Y=0,t) (17¢)
128 aK6 > ’ K=o ’

etc. Equation (17) holds provided R(K,Y=0,1)is analyt-
ic in K around K=0.

Before proceeding further we would like to make some
important observations. One can readily verify from the
master equation (11) that (d /dt)(Trp?) < 1. This implies
that under the dynamical evolution, quantum-mechanical
pure states are transformed asymptotically into a statisti-
cal mixture. This is due to the fact that the fluctuating
potential dephases the quantum evolution [16] and leads
to irreversible behavior. The statistics of random poten-
tial is identical under time reversal, e.g., (V(x,t))
=(Vi(x,—1t)). In fact, we can assume
V(x,t)=V(x,—t); this does not effect any property of
the dynamical evolution. This is because the dynamical
evolution up to time ¢ contains only information about
the random potential from time O to time z. We have set
initial time t=0. Now one can notice from the Eq. (4)
that the behavior of the density matrix is invariant under
time reversal. Hence if p(x’,x,t) is a solution then
p*(x',x,—1t) is also a solution of Eq. (4). Since p and p*
contain the same information, if we start with an equa-
tion for p*(x’,x,¢) and, after averaging over random po-
tential, let t— —¢, we arrive at another solution to the
same physical problem. The final required second solu-
tion turns out to be same as that of Eq. (15) except the
sign in front of V3 is changed. It turns out that in real
situations one of the solutions is physically relevant. In
fact, one can notice that for a given g(x —x’) one of the
solutions gives in the asymptotic time domain negative
values for expectation values of even powers of x, and
hence that solution should be rejected.

We first consider a case where the spatial part of the
potential correlation function is given by

g(y) exp[ —y2/2a?] . (18)

a 2m)'%a

The mean-squared displacement, which has been worked
out earlier [10], is given by

7 1 Vs
(xXt))=0+ 12+ —= 3
x 4m?g? 3V2r m2d?
V2
~—1 O 43 for t—oo . (19)

T 3V27r m2dd
This is an exact result. It shows clearly that the particle
motion is nondiffusive on any time scale. It can be easily
shown that asymptotically all the higher moments (x2")
scale as t". It is important to note here that the
coefficients in front of #3" do not involve the Planck con-
stant 7. This implies that we would have obtained exact-
ly the same asymptotic behavior by doing a classical
counterpart; quantum effects for continuous potentials
such as considered here are only relevant at very early
times. With this choice for g(y), the system steadily
gains energy at a constant rate. The rate of change of
average kinetic energy H =P2/2m[=—(#*/2m)(d%*/
ax7)],

P2 3p

om ot (20)

a _
o (H)=Tr

Now using Eq. (11), the only nonvanishing contribution
comes from the last term in (11) and equals
(V§/#) [[(3%/3x?)g (x —x")p(x,x",1)],—,dx. Integrat-
ing by parts, we finally get [17]
V2
——(H)=—-—g"(0) . @21
m

The right-hand side of Eq. (21) is a constant and is an en-
ergy rate constant.

Next we consider a correlation function given by
g(y)=exp[—ay*]. For this case first one can readily
show that the average energy is a constant of motion, i.e.,
d{H)/dt=0 [see Eq. (21)]. Note that the energy of the
system is not strictly conserved ({ H?) is not a constant
of motion), but the energy is conserved on the average.
Such a conservation law does not arise in the classical
counterpart. One can readily verify this, starting with a
classical equation of motion m d2x /dt?>=V (x,t). The ki-
netic energy is given by L(dx /dt)®. We have set the unit
of mass m equal to unity. For the kinetic-energy conser-
vation on an average we require that
%f(t)f“ V(x(t'),t')V(x(¢"),t""))dt'dt"” be constant in-
dependent of space and time. Given the correlation func-
tion for random potential [Eq. (2)], the average kinetic
energy is given by ¥3g(0)t /2. This shows that in a clas-
sical treatment a particle on an average gains the kinetic
energy at a constant rate. After explaining the quantum
nature of the conservation law, let us look at the effect of
this on the behavior of moments of position of the quan-
tum particle. The mean-squared displacement is given by

,ﬁZ
(x?)=0%+ t? (22a)
4m?g?
and the fourth moment {x*) is given by
2.2 4.4 V2#H2a2
(x*)=2024+ L AT 24 TORTD s

m? 8miot 5 m*
24 Viia?

- 2
r— (22b)

t3 for t— oo .

~
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Similarly,

Via#t
<x6)~7_2L_

5 mbo2 (22¢)

t7 for t— o ,
and other moments scale as (x%)~¢10, (x10)~z12
(x12) ~¢15, etc. One can write these asymptotic results
in a simple form,

t2, n<1
(x2n)y~ 1372 > 1 and n even (23)
$B372n=D+2" 5 51 and n odd .

Unlike the case g(y)~e ¥ 2, all the coefficients in front
of asymptotic time dependence involve the Planck con-
stant [see, for example, Egs. (22b) and (22¢)]. This shows
that these new relations arise essentially in a quantum
treatment and are associated with the conservation laws
mentioned above. None of the moments {x?") can be
represented by a single functional from ¢™?", with a
unique function 7. We need three different types of =
function. Hence our quantum dynamical process leads to
a weak multifractal nature for the moments. We have
used the word weak in the sense that for actual multifrac-
tal nature one requires an infinite hierarchy of exponents.

We can generalize our results to other simple analytical
correlation functions (analytic at the origin) like
g(y)=exp[—ay?] and m>1. The asymptotic scaling
relations for moments are given by

t?" for n<m

(x?") ~ sL2m+1)/m] (24)

" forn>m
and integral multiples of m. For successive n between
two integer numbers am and (a+ 1)m (where a is an in-
teger) the exponents vary in steps of 2, starting with a
lowest value of 2m +1)a. As in the earlier situation, all
the coefficients contain #. For the above case of the
correlation function we have (m —1) conservation laws,
namely, (H), (H?),..., (H™7 ') are conserved.
However, higher moments [>(m —1)] are not con-
served.

III. DISCUSSION

We have analyzed a quantum motion of a particle sub-
ject to a stochastic potential, where the correlation func-
tion is correlated by a 8 function in time but arbitrarily
correlated in space. The problem has been solved analyti-
cally. In our analysis we have considered spatial correla-

tions of the form g (y)~e —ay®" which is analytic at y=0.
We have shown that moments exhibit a weak multifractal
behavior. The exponents are not universal and depend on
the value of m. This rules out superuniversality of ex-
ponents for this problem. For m > 1, the behavior is due
purely to quantum nature. This is somewhat counterin-
tuitive from the fact that stochastic noise would have de-
phased the quantum evolution leading to a classical
behavior at large times. However, for m>1 we have
shown that there arises (m — 1) conservation laws, name-
ly, moments of energy up to (m —1) are conserved on the
average for all times. These quantum-mechanical conser-
vation laws constrain the quantum evolution for all times
leading to new features not contained in a classical coun-
terpart. None of the moments with power less than or
equal to 2(m —1) feel the effect of dynamical disorder
and consequently evolve ballistically. However, the effect
of dynamical disorder is seen in the moments with power
greater than 2(m —1). This is a very special type of
motional narrowing effect.

We believe that a new class of exponent relations may
arise, if we consider correlation functions g (y) nonanalyt-
ic at y=0. These special cases call for a somewhat de-
tailed evaluation. However, all other types of analytical
correlation functions will lead to similar behavior with
some variations. For example, all analytical correlation
functions g (y) which can be expanded into same powers
of y belong to the same universality class. In this class we
have the same set of energy-conservation constraints.
Our analysis also lead to a conclusion that there are
infinitely many types of stochastic potentials [e.g.,
different correlation function g (y)] that lead to the same
constraints on moments of energy. Conversely, with
given constraints for quantum evolution, the underlying
stochastic process for potential is not unique.

In our analysis we have been restricted to integer mo-
ments. At present it is not clear whether scaling proper-
ties of fractional exponents have simpler relations. It will
be also interesting to explore the relationship between the
multifractal behavior of the wave function to that of mul-
tifractal behavior of moments. On a lattice, discretiza-
tion will lead to a momentum cutoff and therefore does
not exhibit the behavior obtained in continuum theories.
On a lattice, the quantum motion of a particle gives
asymptotic scaling behavior, and the particle will always
propagate diffusively. However, for short-time scales,
motion on a lattice should exhibit the behavior obtained
in a continuum version. Further research along these
lines is in progress.
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